$9^{\text {th }}$ Class Physics Chapter 2 Notes FBISE National Book Foundation

NUMERICAL RESPONSE QUESTIONS

Solve the following.

Q1. Convert the following:
a. $160 \mathrm{kmh}^{-1}$ Into ms^{-1}
b. $36 \mathrm{~ms}^{-1}$ Into kmh^{-1}
c. $15 \mathrm{kmh}^{-2}$ Into ms^{-2}
d. $1 \mathbf{~ m s}^{-2}$ Into $\mathbf{k m h}^{-2}$

Ans: To convert between these units, we use the following relationships:

- $\quad 1 \mathrm{kmh}^{-1}=\frac{1}{3.6} \mathrm{~ms}^{-1}$
- $1 \mathrm{~ms}^{-1}=3.6 \mathrm{kmh}^{-1}$
- $1 \mathrm{kmh}^{-2}=\left(\frac{1}{3.6}\right)^{2} \mathrm{~ms}^{-2}$
- $1 \mathrm{~ms}^{-2}=(3.6)^{2} \mathbf{k m h}^{-2}$

Now, applying these conversions:
a. $160 \mathrm{kmh}^{-1}$ Into ms^{-1}
$160 \mathrm{kmh}^{-1} \times \frac{1 \mathrm{~ms}^{-1}}{3.6 \mathrm{kmh}^{-1}}=\frac{160}{3.6} \mathrm{~ms}^{-1}=44.44 \mathrm{~ms}^{-1}$
b. $\mathbf{3 6} \mathbf{~ m s}^{-1}$ Into $\mathbf{~ k m h}^{-1}$
$36 \mathrm{~ms}^{-1} \times 3.6 \mathrm{kmh}^{-1}=129.6 \mathrm{kmh}^{-1}$
c. $\mathbf{1 5} \mathbf{k m h}^{-2}$ Into $\mathbf{m s}^{-2}$
$15 \mathrm{kmh}^{-2} \times\left(\frac{1}{3.6}\right)^{2} \mathrm{~ms}^{-2}=15 \times \frac{1}{12.96} \mathrm{~ms}^{-2}=1.157 \mathrm{~ms}^{-2}$
d. $1 \mathrm{~ms}^{-2}$ into $\mathbf{k m h}^{-2}$
$1 \mathrm{~ms}^{-2} \times(3.6)^{2} \mathrm{kmh}^{-2}=12.96 \mathrm{kmh}^{-2}$
Q2. In 10 seconds, a cyclist increases its speed from $5 \mathrm{kmh}^{-1}$ to $7 \mathrm{kmh}^{\mathbf{- 1}}$, while a car moves from rest to $20 \mathrm{kmh}^{-1}$ in same time. Calculate and compare acceleration in each case.
(Ans. $0.055 \mathrm{~ms}^{-2}$ and $0.55 \mathrm{~ms}^{-2}$)
Ans:
Given data:
Time taken $=\mathrm{t}=10 \mathrm{~s}$

Initial speed of cyclist $=v_{1}=5 \mathbf{k m h}^{-1}$
Final speed of cyclist $=\mathrm{v}_{\mathrm{f}}=7 \mathrm{kmh}^{-1}$
Initial speed of car $=v_{1}=20 \mathbf{k m h}^{-1}$
Final speed of car $=v_{\mathrm{f}}=0 \mathrm{kmh}^{-1}$

Required:

Acceleration of cyclist $=\mathbf{a}_{\text {cyctist }}=$?
Acceleration of ear $=\mathrm{a}_{\text {car }}=$?
Solution:
First we will convert all the given speeds into m / s.
Initial speed of cyclist
Final speed of cyclist
Initial speed of car

$$
\begin{aligned}
& v_{1}=5 \mathrm{kmh}^{-1}=\frac{5 \times 1000 \mathrm{~m}}{3600 \mathrm{~s}}=1.39 \mathrm{~ms}^{-1} \\
& v_{\mathrm{f}}=7 \mathrm{kmh}^{-1}=\frac{7 \times 1000 \mathrm{~m}}{3600 \mathrm{~s}}=1.94 \mathrm{~ms}^{-1} \\
& v_{1}=20 \mathrm{kmh}^{-1}=\frac{20 \times 1000 \mathrm{~m}}{3600 \mathrm{~s}}=5.56 \mathrm{~ms}^{-1} \\
& v_{1}=0 \mathrm{kmh}^{-1}=\frac{0 \times 1000 \mathrm{~m}}{3600 \mathrm{~s}}=0 \mathrm{~ms}^{-1}
\end{aligned}
$$

Final speed of car
Now acceleration of cyclist is given by:

$$
a_{\text {cyclist }}=\frac{v_{f}-v_{i}}{\Delta t}=\frac{1.94-1.39}{10 s}=0.05 \mathrm{~ms}^{-2}
$$

Now acceleration of car is given by:

$$
a_{\mathrm{car}}=\frac{v_{f}-v_{i}}{\Delta t}=\frac{5.56-0}{10 s}=0.556 \mathrm{~ms}^{-2}
$$

Car has a much greater acceleration (about 10 times) than the cyclist.
Q3. A ball is thrown straight up such that it took 2 seconds to reach the top after which it started falling back. What was the speed with which the ball was thrown up? (Ans. $19.6 \mathrm{~ms}^{-1}$)

Ans:

Given data:

Final velocity at the top $(v)=0 \mathrm{~ms}^{-1}$
Acceleration due to gravity $(a)=9.8 \mathrm{~ms}^{-2}$
[Acting downward, so it's negative in our equation because we consider upward movement as positive]

Time to reach the top $(t)=2$ seconds

Speed with which the ball was thrown up $\left(V_{1}\right)=$?

Solution:

We can use the formula that relates initial velocity $\left(V_{L}\right)$, acceleration (a), and time (t) :

$$
V=V_{1}+a t
$$

Rearranging the formula to solve for \boldsymbol{v}_{i}, we have:
$V=V_{t}+a t$
$0=V_{1}-(9.8 \times 2)$
$V_{t}=9.8 \times 2 \Rightarrow V_{t}=19.6 \mathrm{~ms}^{-1}$
Therefore, the initial speed with which the ball was thrown up is $19.6 \mathrm{~ms}^{-1}$,
Q4. A car is moving with uniform velocity of $20 \mathbf{~ m s}^{-1}$ for 20 seconds. Then brakes are applied and it comes to rest with uniform deceleration in 1 minute. Plot the graph to calculate this distance using speed time graph?(Ans. 1 km)

Ans:
Given data:
Uniform speed $=v_{1}=20 \mathrm{~ms}^{-1}$
time taken $=\hat{t}_{1}=20 \mathrm{~s}$
Final speed of car $=v_{f}=0 \mathrm{~ms}^{-1}$
Time taken to stop $=t_{2}=1$ minute $=60 \mathrm{~s}$

Required:

Distance covered using graph $=\mathbf{S}=$?

Solution:
To find distance covered using velocity time graph, we will find area under the curve. Area is divided into two parts A_{1} and A_{2} as shown in the figure.

The total distance covered will then be given by:
Distance covered $=$ Area $\mathrm{A}_{1}+$ Area A_{2}
$S=v \times t+\frac{1}{2} v \times t$

Putting values: $S=20 \times 20+\frac{1}{2}(20 \times 60)$
$S=400 \mathrm{~m}+600 \mathrm{~m}=1000 \mathrm{~m}=1 \mathrm{~km}$
Thars the power of using graphs. A very complicated problem is solved in just three steps.

Q5. A girl starts her motion by a racing bicycle in a straight line at a speed of $50 \mathrm{kmh}^{\mathbf{- 1}}$. Her speed is changing at a constant rate. If she stops after 60 s , what is her acceleration? (Ans. 0. $23 \mathrm{~ms}^{-2}$)

Ans:
Given datal:
Initial velocity $=\left(v_{l}\right)=50 \mathbf{k m h}^{-1}$
Final velocity $=\left(v_{f}\right)=0 \mathrm{~ms}^{-1}$ (Since she comes to a stop)
Time $=(t)=60 \mathrm{~s}$

Required:

Acceleration $=(a)=$?
Solution:
Convert the initial velocity from kilometers per hour to meters per second:

$$
50 \mathrm{kmh}^{-1}=50 \times \frac{1}{3.6} \mathrm{~ms}^{-1}=13.89 \mathrm{~ms}^{-1}
$$

Use the formula for acceleration to solve for a :

$$
v_{f}=v_{i}+a t
$$

$0=13.89+a \times 60=\quad, \quad-13.89=60 \times a$
$a=\frac{-13.89}{60}$
$a=-0.23 \mathrm{~ms}^{-2}$
Therefore, the acceleration of the girl on her bicycle is $-0.23 \mathrm{~ms}^{-2}$. The negative sign indicates deceleration, as expected since she comes to a stop.

Q6. Consider the following speed time graph. Tell:
a. Which part of the graph is showing acceleration, deceleration and zero acceleration?
b. Calculate covered distance from $\mathbf{1 0}$ seconds to $\mathbf{2 0}$ seconds from the graph.
(Ans. (a) OA, BC, AB, (b) 500 m)

Ans:
Solution: Graph is a trapezium
(a) The first part of the graph (OA) shows acceleration . The speed of the body is increasing.

The second part of the graph A to B moving with uniform velocity show zero acceleration And B to C is decreasing velocity So deceleration
(b) Distance travelled from 10 seconds to 20 seconds can be found by finding the area under the $A B$ curve, which is given by:

Distance travelied $s=$ speed \times time
$S=50 \times 10=500 \mathrm{~m}$

