All Chapter Notes Click www.ilmge.com Full Book Notes are Available here

FBISE $9^{\text {th }}$ Class Physics New Book Notes Chapter 3

NUMERICAL RESPONSE QUESTIONS

Q1. Consider a spring with a spring constant of $8000 \mathrm{Nm}^{-1}$. If a force of 500 N is applied to the spring, what will be the displacement of the spring?

Solution:
To find the displacement of the spring when a force is ,applied, we can use Hooke's Law, which states: $\mathbf{F}=\mathbf{k x}$

Given data; Force applied $F=500 \mathrm{~N}$; Spring constant $k=8000 \mathrm{Nm}^{-1}$
Required: Displacement $x=$?
We rearrange the formula to solve for displacement:
Hooke's Law, which states: $\mathbf{F}=\mathbf{k} \boldsymbol{x} \Rightarrow x=\frac{\mathbf{F}}{\mathbf{k}}$

$$
x=\frac{500 \mathrm{~N}}{8000 \mathrm{Nm}^{-1}}=0.0625 \mathrm{~m} \text { or } 6.25 \mathrm{~cm}
$$

So, the displacement of the spring when a force of 500 N is applied is 0.0625 m , or 6.25 cm . Q2. In a force multiplier, small piston has diameter of 15 cm and large piston has diameter of $30 \mathbf{~ c m}$. If 250 N force is applied on the small piston then how much force will produce on large piston? (Ans. 1000 N)

Solution:
Given data: Diameter of small piston $=\mathrm{d}_{1}=15 \mathrm{~cm}$
Diameter of large piston $=\mathrm{d}_{\mathbf{2}}=\mathbf{3 0} \mathrm{cm}$
Radius of small piston $=r_{1}=7.5 \mathrm{~cm}$
Radius of large piston $=r_{2}=15 \mathrm{~cm}$
Applied force on small piston $=\mathbf{F}=\mathbf{2 5 0 N}$
Required: Applied force on large piston $=\mathrm{F}_{2}=$?
Using Pascal's law: $\frac{F_{2}}{F_{1}}=\frac{A_{2}}{A_{1}}=\frac{\pi r_{2}^{2}}{\pi r_{1}^{2}}$
$\Rightarrow \frac{P_{2}}{F_{1}}=\frac{r_{2}^{2}}{r_{1}^{2}} \Rightarrow F_{2}=\frac{r_{2}^{2}}{r_{1}^{2}} \times F_{1} \Rightarrow F_{2}=\frac{(15)^{2}}{(7.5)^{2}} \times 250$
$\Rightarrow F_{2}=\frac{225}{56.25} \times 250 \Rightarrow F_{2}=4 \times 250 \Rightarrow F_{2}=1000 \mathrm{~N}$
Q3. A hydraulic car lift lifts a car of mass 1000 kg when we apply force of 50 N on small piston. Radius of Its small piston is 20 cm . Find the radius of Its large piston.

Solution:
Given data; Mass of car $=\mathrm{m}=\mathbf{1 0 0 0} \mathrm{kg}$
Force on small piston $=\mathrm{F}_{1}=\mathbf{5 0 N}$
Radius of small piston $=r_{1}=\mathbf{2 0} \mathrm{cm}=\mathbf{0 . 2 0} \mathrm{m}$
Radius of large piston $=r_{2}=$?
First, we will find force on larger piston from the weight of car.

All Chapter Notes Click www.ilmge.com Full Book Notes are
 Available here

Force on large piston ${ }^{\circ} F_{2}^{\prime}=$ weight of car ' w '
Therefore, $\mathbf{w}=\mathrm{mg}=1000 \times 9.8=\mathbf{9 8 0 0} \mathrm{N}$
Using Pascal's law:
$\Rightarrow \frac{F_{2}}{F_{1}}=\frac{A_{2}}{A_{1}}=\frac{\pi r_{2}^{2}}{\pi r_{1}^{2}} \Rightarrow \frac{F_{2}}{F_{1}}=\frac{r_{2}^{2}}{r_{1}^{2}} \Rightarrow r_{2}=\sqrt{\frac{F_{2}}{F_{1}} \times r_{1}^{2}}$
Putting values,
$\Rightarrow r_{2}=\sqrt{\frac{9800}{50} \times(0.20)^{2}} \Rightarrow r_{2}=\sqrt{196 \times 0.04}$
$\Rightarrow r_{2}=\sqrt{7.84} \Rightarrow r_{2}=2.8 \mathrm{~m}$
Q4. Water column in a beaker is 70 cm . Find the pressure of water in beaker. Take density of water as $1000 \mathbf{~ k g ~ m}^{\mathbf{- 3}}$. (Ans. 6.86 kPa)
Solution:
Given data: Height of water column $=\mathbf{h}=\mathbf{7 0} \mathrm{cm}=0.7 \mathrm{~m}$ Density of water $=\rho=$ $1000 \mathrm{~kg} \mathrm{~m}^{-3}$
Acceleration $=\mathrm{g}=9.8 \mathrm{~ms}^{-2}$
Required: Pressure of water in beaker: $=\mathrm{P}=$?
The relation for pressure: $\mathbf{P}=\boldsymbol{\rho g} \boldsymbol{g}$
$\Rightarrow P=1000 \times 9.8 \times 0.7 \Rightarrow P=6860 \Rightarrow P a=6.86 \mathrm{kPa}$
Q5. How much force should be applied on an area of $20 \mathrm{~cm}^{2}$ to get a pressure of 4500 Pa ? (Ans. 9 N)
Solution:
Given datai Pressure $=P=4500 \mathrm{~Pa}$

$$
\begin{aligned}
& \text { Pressure }=P=4500 \mathrm{~Pa} \\
& \text { Area }=A=20 \mathrm{~cm}^{2}=20 \times 10^{-4} \mathrm{~m}^{2}=0.002 \mathrm{~m}^{2}
\end{aligned}
$$

Required: Force $=$?

$$
\begin{aligned}
& \Rightarrow \quad \text { Pressure }=\frac{\text { Force }}{\text { Area }} \Rightarrow P=\frac{F}{A} \\
& \Rightarrow \quad F=P \times A \\
& \Rightarrow \quad \text { Force }=4500 \mathrm{~Pa} \times 0.002 \mathrm{~m}^{2} \\
& \Rightarrow \quad \text { Force }=F=9 \mathrm{~N}
\end{aligned}
$$

For Download All Chapter Notes and Numerical Notes Visit www.ilmge.com

