All Chapter Notes Click www.ilmge.com Full Book Notes are
 Available here

FBISE $9^{\text {th }}$ Class Physics New Book Notes Chapter 3
NUMERICAL RESPONSE QUESTIONS
Q1. A boy is holding a book of mass 2 kg . How much force is he applying on the book? If he moves it up with acceleration of $3 \mathbf{~ m s}^{-2}$, how much should he apply total force on the book? (Ans. $19.6 \mathrm{~N}, 25.6 \mathrm{~N}$)

Solution:

Given data: mass of book $=\mathbf{m}=\mathbf{2 k g}$ acceleration due to gravity $=a_{1}=g=9.8 \mathrm{~ms}^{-2}$

Acceleration moving up $=\mathrm{a}_{2}=3 \mathrm{~ms}^{-2}$
Required: (a) Force on holding the book $=F_{1}=$?
(b) Total force on book $=\mathrm{F}_{\mathrm{T}}=$?
(a) Holding a book stationary in air is equivalent to applying a force equal to its weight. So, the force applying by the boy in holding a book is given by:

$$
F_{1}=m g \Rightarrow F_{1}=2 \times 9.8 \Rightarrow F_{1}=19.6 \mathrm{~N}
$$

(b) First, we will find the force that is moving up the book:

$$
F_{2}=m a_{2} \Rightarrow F_{2}=2 \times 3 \Rightarrow F_{2}=6 \mathrm{~N}
$$

Now the total force acting on the book in moving it up with an acceleration of $3 \mathrm{~ms}^{-2}$ will become:

$$
\text { Total force }=F=F_{1}+F_{2}=19.6 \mathrm{~N}+6 \mathrm{~N}=25.6 \mathrm{~N}
$$

Q2. A girl of mass 30 kg is running with velocity of $4 \mathbf{m s}^{\mathbf{- 1}}$. Find her momentum.
(Ans. 120Ns)
Solution:
Given data: mass $=m=30 \mathrm{~kg}$ velocity $=v=4 \mathrm{~ms}^{-1}$
Required: momentum $=\mathbf{p}=$?
The momentum of a body is given by: $\mathbf{p}=\mathrm{mv}$

All Chapter Notes Click www.ilmge.com Full Book Notes are
 Available here

Putting values: $p=30 \times 4 \Rightarrow p=120 \mathrm{Ns}$
Q3. A 2 kg steel ball is moving with speed of $15 \mathrm{~ms}^{-1}$. It hits with bulk of sand and comes to rest in 0.2 second. Find force applied by sand bulk on the ball.
(Ans. - 150 N)

Solution:

Given data: mass of ball $=\mathbf{m}=\mathbf{2 k g}$
initial speed of ball $=v_{1}=15 \mathrm{~ms}^{-1}$
Time taken $=\Delta \mathrm{t}=0.2 \mathrm{~s}$
final speed of ball $=v_{f}=0 \mathrm{~ms}^{-1}$
Required: applied force $=\mathbf{F}=$?
The rate of change of momentum is given by.

$$
F=\frac{\Delta p}{\Delta t}=\frac{p_{1}-p_{1}}{\Delta t}
$$

Putting in above equation:
$F=\frac{m v_{f}-m v_{i}}{\Delta t}$
Putting values we get
$F=\frac{2 \times 0-2 \times 15}{0.2} \Rightarrow F=-150 \mathrm{~N}$
The force will be opposite to the direction of motion of ball, that's why negative sign is there

Q4. A100 grams bullet is fired from 5 kg gun. Muzzle velocity of bullet Is $20 \mathrm{~ms}^{-1}$. Find recoll velocity of the gun. (Ans. $0.4 \mathrm{~ms}^{-1}$)

Solution:
Given data: mass of bullet $=\mathrm{m}_{\mathrm{b}}=100 \mathrm{~g}=0.1 \mathrm{~kg}$
mass of gun $=m_{\mathrm{g}}=5 \mathrm{~kg}$
Velocity of bullet $=v_{\mathrm{b}}=20 \mathrm{~m} / \mathrm{s}$
Required: velocity of gun $=v_{\mathrm{g}}=$?
From conservation of momentum:

All Chapter Notes Click www.ilmge.com Full Book Notes are Available here

momentum before firing $=$ momentum after firing
As momentum before firing is zero (because gun and bullet are at rest), therefore, momentum after firing must also be zero:

$$
P_{\text {after }}=0 \Rightarrow\left(p_{b}+p_{g}\right)_{\text {after }}=0
$$

As $\mathbf{p}=\mathbf{m v}$, putting in above equation:

$$
m_{b} v_{b}+m_{g} v_{g}=0 \Rightarrow v_{g}=-\frac{m_{b} v_{b}}{m_{g}}
$$

Putting values: $v_{\mathrm{E}}=-\frac{0.1 \times 20}{5} \Rightarrow v_{\mathrm{g}}=-0.4 \mathrm{~ms}^{-1}$
Negative sign shows recoil of the gun.
Q5. A robotic car of 15 kg is moving with $25 \mathrm{~ms}^{-1}$. Brakes are applied to stop it. Brakes apply constant force of 50 N . How long does the car take to stop?
(Ans. 7.5 s)

Solution:

Given data: mass of robotic car $=m=15 \mathrm{~kg}$
initial speed of robotic car $=v_{1}=25 \mathrm{~ms}^{-1}$
Brakes force in opposite direction $=\boldsymbol{F}=-50 \mathrm{~N}$
final speed of robotic car $=v_{\mathrm{f}}=0 \mathrm{~ms}^{-1}$
Required: time to stop the car $=\Delta t=$?
The rate of change of momentum is given by:

$$
F=\frac{\Delta p}{\Delta t}=\frac{P_{i}-p_{i}}{\Delta t} \Rightarrow \Delta t=\frac{P_{i}-P_{i}}{F}
$$

As $p=m v$, putting in above equation: $\Delta t=\frac{m v_{f}-m v_{1}}{F}$

$$
\text { Putting values: } \Delta \mathrm{t}=\frac{15 \times 0-15 \times 25}{-50}=\frac{-375 \mathrm{~s}}{-50} \Rightarrow \Delta t=7.5 \mathrm{~s}
$$

For Download All Chapter Notes and Numerical Notes Visit www.ilmge.com

